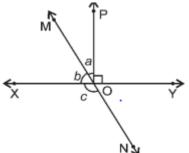


NCERT solutions of Line and angles part 1

Question 1

In below figure, lines AB and CD intersect at O. If $\angle AOC + \angle BOE = 70^{\circ}$ and $\angle BOD = 40^{\circ}$, find $\angle BOE$ and reflex $\angle COE$.

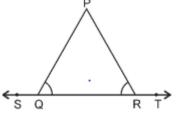


Answer

Given, $\angle AOC + \angle BOE = 70^{\circ} \text{ and } \angle BOD = 40^{\circ}$ Now AOB is a straight line $\angle AOC + \angle BOE + \angle COE = 180^{\circ}$ $70^{\circ} + \angle COE = 180^{\circ}$ $\angle COE = 110^{\circ}$ Also COD is a straight lne $\angle COE + \angle BOD + \angle BOE = 180^{\circ}$ $110^{\circ} + 40^{\circ} + \angle BOE = 180^{\circ}$ $150^{\circ} + \angle BOE = 180^{\circ}$ $\angle BOE = 30^{\circ}$

Question 2

In below figure lines XY and MN intersect at O. If $\angle POY = 90^{\circ}$ and a : b = 2 : 3, find c.


Answer

Given, $\angle POY = 90^{\circ}$ and a : b = 2 : 3

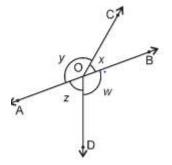
```
Let x be the common ration, then a=2x and b=3x
Now XOY is a straight line
\angle POY + a + b = 180^{\circ}
90^{\circ} + a + b = 180^{\circ}
a + b = 90^{\circ}
2x + 3x = 90^{\circ}
5x = 90^{\circ}
x = 18^{\circ}
So a = 2 \times 18^{\circ} = 36^{\circ}
and b = 3 \times 18^{\circ} = 54^{\circ}
Also, now angle b and Angle c forms a linear pair
b + c = 180^{\circ}
54^{\circ} + c = 180^{\circ}
c = 126^{\circ}
```

Question 3

In below figure, $\angle PQR = \angle PRQ$, then prove that $\angle PQS = \angle PRT$.

Answer

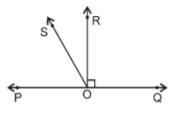
Given $\angle PQR = \angle PRQ$ To prove, $\angle PQS = \angle PRT$ Now $\angle PQR$ and $\angle PQS$ forms a linear pair $\angle PQR + \angle PQS = 180^{\circ}$ $\angle PQS = 180^{\circ} - \angle PQR ---$ (a) Also, $\angle PRQ$ and $\angle PRT$ forms a linear pair $\angle PRQ + \angle PRT = 180^{\circ}$ ($\angle PRT = 180^{\circ} - \angle PRQ$ Now as ($\angle PQR = \angle PRQ$ $\angle PRQ = 180^{\circ} - \angle PQR ---$ (b) From (a) and (b)



 $\angle PQS = \angle PRT = 180^{\circ} - \angle PQR$ Therefore, $\angle PQS = \angle PRT$

Question 4

In below figure, if x + y = w + z, then prove that AOB is a line.



Answer

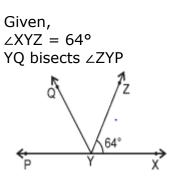
Given, x + y = w + zTo Prove, AOB is a line or $x + y = 180^{\circ}$ Now O is the point and we have four angles around it $x + y + w + z = 360^{\circ}$ $(x + y) + (w + z) = 360^{\circ}$ Now Given x + y = w + z $(x + y) + (x + y) = 360^{\circ}$ $2(x + y) = 360^{\circ}$ $(x + y) = 180^{\circ}$ Hence, x + y makes a linear pair. Therefore, AOB is a straight line.

Question 5

In below figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that $\angle ROS = 1/2(\angle QOS - \angle POS)$.

Answer

Given, OR is perpendicular to line PQ To prove, $\angle ROS = 1/2(\angle QOS - \angle POS)$


Proof

 $\angle POR = \angle ROQ = 90^{\circ} \text{ (Perpendicular)}$ From the figure, it is clear that $\angle QOS = \angle ROQ + \angle ROS = 90^{\circ} + \angle ROQ --- \text{ (a)}$ $\angle POS = \angle POR - \angle ROS = 90^{\circ} - \angle ROQ --- \text{ (b)}$ Subtracting (b) from (a) $\angle QOS - \angle POS = 90^{\circ} + \angle ROQ - (90^{\circ} - \angle ROQ)$ $\Rightarrow \angle QOS - \angle POS = 90^{\circ} + \angle ROQ - 90^{\circ} + \angle ROQ$ $\Rightarrow \angle QOS - \angle POS = 2\angle ROQ$ $\Rightarrow \angle ROS = 1/2(\angle QOS - \angle POS)$ Hence, proved.

Question 6

It is given that $\angle XYZ = 64^{\circ}$ and XY is produced to point P. Draw a figure from the given information. If ray YQ bisects $\angle ZYP$, find $\angle XYQ$ and reflex $\angle QYP$.

Answer

Now angle \angle XYZ and \angle ZYP forms a linear pair

 $\angle XYZ + \angle ZYP = 180^{\circ}$ $64^{\circ} + \angle ZYP = 180^{\circ}$ $\angle ZYP = 116^{\circ}$ Now YQ bisects $\angle ZYP$ $\angle ZYQ = \angle QYP$ Also $\angle ZYP = \angle ZYQ + \angle QYP$ So $\angle ZYP = 2\angle ZYQ$ $2\angle ZYQ = 116^{\circ}$ $\angle ZYQ = 58^{\circ} = \angle QYP$ Now,

 $\angle XYQ = \angle XYZ + \angle ZYQ$ $\angle XYQ = 64^{\circ} + 58^{\circ}$ $\angle XYQ = 122^{\circ}$ Also, reflex $\angle QYP = 180^{\circ} + \angle XYQ$ $\angle QYP = 180^{\circ} + 122^{\circ}$ $= 302^{\circ}$